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Abstract 
 
To develop an effective hybrid-mixed element, it is extremely critical as to how to assume the stress field. This re-

search article demonstrates the effect of additional equilibrium stress functions to enhance the numerical performance 
of the locking-free three-node hybrid-mixed curved beam element, proposed in Saleeb and Chang’s previous work. It is 
exceedingly complicated or even infeasible to determine the stress functions to satisfy fully both the equilibrium condi-
tions and suppression of kinematic deformation modes in the three-node hybrid-mixed formulation. Accordingly, the 
additional stress functions to satisfy partially or fully equilibrium conditions are incorporated in this study. Several 
numerical examples for static and dynamic problems confirm that the newly proposed element with these additional 
stress functions is highly effective regardless of the slenderness ratio and curvature of arches in static and dynamic 
analyses. 
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1. Introduction 

Curved beam elements have been the subject of in-
tensive research interest to gain insight into more 
complex behaviors of shell problems. Due to the nu-
merical problems, such as the locking phenomena and 
severe disturbance of stress prediction in the earliest 
attempts, numerous noteworthy elements based on the 
minimum potential energy principle have been pro-
posed [1-9]. As an alternative to these displacement-
based elements, considerable efforts have been de-
voted to the development of mixed or hybrid-mixed 
finite elements [10-15]. Among these, Saleeb and 
Chang [11] developed well-known two-node and 
three-node 0C  curved beam elements that satisfy 
two significant considerations in selecting the stress 

functions. However, these elements proved not to 
show superior numerical behaviors to existing ele-
ments. Zhang [12] demonstrated that Saleeb and 
Chang’s hybrid-mixed curved beam elements are 
identical to reduced integration elements from a dif-
ferent point of view. Dorfi and Busby [13] introduced 
a two-node hybrid-mixed laminated composite 
curved beam element. Lastly, Kim et al. [14, 15] en-
hanced the numerical performance of a two-node 
hybrid-mixed linear element by employing the node-
less internal degrees of freedom in interpolating the 
displacement field and field-consistent stress func-
tions. However, additional computational efforts were 
inevitable to construct the stiffness and mass matrix 
of a conventional size.  

The objective of this research paper is to display 
the effect of the additional stress functions in a stress 
field to satisfy partially or fully equilibrium condi-
tions on the development of effective three-node hy-
brid-mixed curved beam elements. For this purpose, 
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Saleeb and Chang’s HMC3 element is considered as a 
reference model. The proposed elements do not re-
quire additional computational efforts via the usual 
Lagrangian quadratic interpolation functions to as-
sume the displacements. Several numerical examples 
will confirm that these additional stress functions are 
highly efficacious in improving the numerical stabil-
ity and convergence without regard for the slender-
ness ratio of arches and curvature.  
 

2. Hybrid-mixed formulation 

Fig. 1 shows the geometry of a three-node curved 
beam element having the thickness h , beam width 
b , initial radius of curvature R  and length 0l Rϕ= . 
By employing Hamilton’s principle, the equations of 
motion can be derived as: 

 
1

0

( )d 0
t

HRt
H T tδ δ= Π − =∫  (1) 

 
where HRΠ  and T  are the Hellinger-Reissner 
functional and the kinetic energy, respectively, given 
by 
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Fig. 1. Geometry of a three-noded curved beam element. 

where [ , , ]TN V M=σ  are generalized stress resul-
tants, 0 0[ , , ]Tε γ κ=ε  are generalized strains, 

[ , , ]Tu v θ=u  are displacements, ρ  is the mass den-
sity, and the dots denote derivatives with respect to 
time t. The stress resultants σ  and strains ε  have 
the relation as = ⋅ε S σ , where S  is a generalized 
material compliance matrix. From the general equa-
tions of the higher-order approximation theory by 
Naghdi and Reissner [16] for shells, the curved beam 
theory is derived as 
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where E  is the elastic modulus, G  is the shear 
modulus, k  is the shear correction factor, and A  
and I  are the area and moment of inertia of the 
cross-section, respectively. For a rectangular cross-
section, Roark [17] calculates 5/ 6k =  by means of 
the elementary strain-energy method, and Cowper 
[18] derives (10 10 ) /(12 11 )k ν ν= + +  depending on 
Poisson’s ratio.  

The three equilibrium conditions for a curved beam 
element displayed in Fig. 1 are given by 

 
1 0x

dN V p
R d Rϕ

− + = ; 1 0y
dV N p

R d Rϕ
+ + = ;  

1 0dM V
R dϕ

+ =   (5) 

 
For finite element approximations, the displace-

ments and stress resultants are independently interpo-
lated in terms of nodal displacement, d , and stress 
parameters, β , as  

 
= ⋅u N d ; = ⋅σ P β   (6) 

 
where N  and P  are the matrices of interpolation 
functions for element displacements and generalized 
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stresses, respectively. Combination of Eqs. (1), (2) 
and (6) yields 

 
21 1

2 2
T T T T TH ω= − − −β Gd β Hβ d Φ Q d d Md−  (7) 

 
where  

 
dT

c
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and Q  is an equivalent nodal force vector, and M  
is a consistent element mass matrix. 

Invoking the stationarity of Eq. (7) with respect to 
d  and β , respectively, and then the substituting the 
stress resultant parameters β  for nodal displace-
ments d  on the element level yield 

 
2[ ]ω− ⋅ = +K M d Q Φ   (9) 

 
where the element stiffness matrix K  is expressed 
as 

 
1T −=K G H G .  (10) 

 

3. Field assumptions 

For three-node hybrid-mixed curved beam ele-
ments, the usual Lagrangian interpolation functions 
are used to assume the displacements in Eq. (2). Us-
ing the dimensionless co-ordinate 0/ /x lξ ϕ ϕ= =  
(0 1)ξ≤ ≤ , the displacements are assumed as 
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where 

 
2

1 1 3 2N ξ ξ= − + ; 2
2 2N ξ ξ= − ; 3 4 (1 )N ξ ξ= −   (12) 

 
and 1,2,3{ , , }k k k ku v θ ==d  are the nodal displacement 
degrees of freedom. 

Saleeb and Chang [11] assumed the following 
field-consistent linear stress functions in Eq. (13). All 
the kinematic deformation modes are suppressed, and 
the spurious constraints are removed in the inexten-
sional bending limit behavior and Kirchhoff limit 
behavior in very thin and nearly straight beams. 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

ξ
ξ

ξ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P   (13) 

 
In the context of present three-node curved beam 

elements, several attempts for assuming stress resul-
tants are made to study the effect of additional stress 
functions to satisfy partially or fully homogeneous 
equilibrium conditions in assuming stress field on the 
numerical performance of Saleeb and Chang’s three-
node element, HMC3. 

 
3.1 Additional equilibrium stress functions model 1 

(designated as EMC3a) 

When the moment-shear force equilibrium equa-
tion in Eq. (5) 

 

2 5
dM V
ld

β β ξ
ξ
= − = − −   (14) 

 
is taken into consideration, the following stress func-
tions can be added in the moment resultant in Eq. (13) 
as 
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These stress functions produce the membrane strain 

in the extensional bending limit behavior as 
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We can apprehend that the spurious constraint can-

not be excluded indirectly in this field-inconsistent m 
embrane strain due to second-order term. 

 
3.2 Relaxed equilibrium stress functions model 2 

(designated as EMC3b) 

When the shear force-axial force and moment-
shear force homogeneous equilibrium in Eq. (5) are 
considered, the coupled conditions can be obtained as  



 J.-G. Kim and Y. K. Park / Journal of Mechanical Science and Technology 22 (2008) 2030~2037 2033 
 

  
 

2

2

1d M N
d Rξ

= ; dM V
ldξ

= −   (17) 

 
These two coupled equations yield the following 

added stress functions in the moment resultant as 
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These stress functions yield the membrane strain in 

the extensional bending limit behavior as 
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and the third-order term to produce a spurious con-
straint makes this membrane strain field-inconsistent. 

 
3.3 Relaxed equilibrium stress functions model 3 

(designated as EMC3c) 

When considering Eq. (5), the homogeneous linear 
differential equation can be derived as 

 
2

2 0d N N
dϕ

+ =   (20) 

 
Solving this differential equation, we can obtain the 

following stress functions to satisfy all the homoge-
neous equilibrium equations in Eq. (5) as 

 
1 2cos sinN ϕβ ϕβ= +   (21a) 

1 2sin cosV ϕβ ϕβ= − +   (21b) 

1 2 3(cos 1) sinM R Rϕ β ϕβ β= − − − +   (21c) 

 
In a nearly straight beam ( 0ϕ → ), these stress 

functions become 
 

1N β=  ; 2V β=  ; 3M β=   (22) 
 

and these are identical to the stress parameters in 
Saleeb and Chang’s two-node HMC2 element. To 
satisfy the Pian and Chen’s guidelines [19] and the 
field-consistency in the limit behaviors, the following 
supplementary stress functions are added to Eq. (13). 
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These stress functions, becoming identical to those 

of HMC3 element in a nearly straight beam, have no 
spurious constraints in Kirchhoff limit behavior. Be-
sides, we can easily confirm that the spurious con-
straint in the inextensional bending limit is removed 
in the following form of membrane strain: 
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3.4 Inconsistent stress functions model (designated 

as IHMC3) 

To examine the effect of the field-consistent stress 
parameters on a three-node hybrid-mixed formulation, 
the following quadratic stress functions with the field-
inconsistent terms will be considered.  
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4. Results and discussions 

To demonstrate the effect of the proposed addi-
tional equilibrium functions on the performance of 
three-node hybrid-mixed elements, several static and 
dynamic numerical examples are considered in terms 
of locking phenomena, convergence, and stress pre-
dictions. The numerical values of geometrical dimen-
sions and material properties given for the numerical 
examples are in consistent units. Shear correction 
factor 5/ 6k = , elastic modulus 610.5 10E = × , 
Poisson’s ratio 0.3125ν = , and shear modulus 

0.5 /(1 )G E ν= +  are applied throughout the analysis. 
All calculations are carried out by using MATLAB. 

 
4.1 Cantilever circular arch 

A cantilever circular arch subjected to a radial point 
load 1P =  at the free end is considered to check the 
effect of shear and membrane locking. Fig. 2 shows 
the tip deflection in a nearly straight cantilever arch 
with 10L =  and 510R = , which is normalized by 
the following exact solution derived from Castigli- 
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Fig. 2. Shear locking test for the tip deflection normalized by 
the exact solution using one element in a nearly straight can-
tilever beam with unit width 1b =  and subtended angle 

0θ = . 
 

ano’s theorem, over the entire range of slenderness 
ratio, / 2L h =  to 105 . 
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The finite element results for radial tip deflection at 

the loaded point are obtained by one-element discreti-
zation over a wide range of subtended angles and 
slenderness ratio. The inconsistent hybrid-mixed ele-
ment IHMC3 suffers from some shear locking. How-
ever, all the proposed hybrid-mixed elements EMC3a, 
EMC3b, and EMCc as well as Saleeb and Chang’s 
HMC3 element exhibit identical locking-free results 
even in extremely thin beams. 

In addition to the shear locking test, the membrane 
locking phenomena appearing in thin arches are ex-
amined in Fig. 3 for the subtended angle 90θ =  
over the slenderness ratios from / 2R h =  to 105. The 
results show that IHMC has a serious membrane 
locking problem in thin arches. On the other hand, we 
can observe that present hybrid-mixed elements 
EMC3a, EMC3b and EMC3c are free from mem-
brane locking problems. Fig. 4 shows the numerical 
stability of present hybrid-mixed elements, which 
have the slenderness ratio / 1000R h = , according to 
the variance of curvature. EMC3b produces more 
accurate results than HMC3 in subtended angles less 
than 120 , and HMC3’s error grows larger as the 
subtended angle becomes larger. It can be confirmed 
that EMC3c produces far superior stabilized results to 
HMC3, EMC3a, and EMC3b elements.  
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Fig. 3. Membrane locking test for the tip deflection normal-
ized by the exact solution using one element in a moderately 
deep cantilever circular arch with unit width 1b =  and 
subtended angle 90θ = . 
 

 
 
Fig. 4. Tip deflection at loaded point normalized by the exact 
solution over a wide range of subtended angle θ . 
 

 
 
Fig. 5. Bending moment distribution of a cantilever circular 
arch with subtended angle 180θ =  and slenderness ratio 

/ 50R h = . 
 

Fig. 5 shows the bending moment distribution of a 
cantilever circular arch. It is observed that the results 
calculated by one EMC3c agree much better with the 
exact solutions than those by other hybrid-mixed  
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Fig. 6. Convergence trend of the normalized radial displace-
ment at the loaded point A in a pinched ring ( 4.953R = , 

0.094h = , 100P = ). 

 
elements using three elements. 

 
4.2 A pinched ring 

Fig. 6 shows the convergence trend of the normal-
ized radial displacement at the loaded point A in a 
pinched ring. Due to the double symmetry, a quadrant 
AB of the ring can be modeled with appropriate 
symmetric boundary conditions. The proposed 
EMC3c element yields more rapidly converging re-
sults than other elements including Prathap and 
Babu’s CMCS element [3], Tessler’s anisoparametric 
element [4], and Saleeb and Chang’s HMC3 element 
[11]. Unlike the previous cantilever circular arch 
problem, EMC3a and EMC3b elements show a little 
worse convergence than HMC3 element. 

 
4.3 Free vibration of hinged arches 

The hinged arches with subtended angle α  shown 
in Fig. 7 are considered to examine the numerical 
performance of the proposed elements in free vibra-
tion analyses. Figs. 8 and 9 show the locking studies 
for the hinged arches with 10α =  and 300α =  
from the slenderness ratio / 5R h =  to 6/ 10R h = , 
respectively. It can be seen that IHMC3 suffers from 
a severe locking problem and HMC3 yields inferior 
results to EMC3c in thinner and deeper hinged arches. 
Figs. 10 and 11 show the convergence trend of the 
normalized fundamental frequency for the hinged 
arches with / 5R h =  and / 1000R h = , respectively. 
Also, both HMC3 and EMC3b show unsettled con-
vergence trends as a subtended angle becomes large. 
However, EMC3c has a remarkably stable conver 

α
R

  
Fig. 7. A hinged arch. 
 

 
 
Fig. 8. Locking studies for the hinged circular arches with 

30α = . 
 

 
 
Fig. 9. Locking studies for the hinged circular arches with 

300α = . 
 

 
 
Fig. 10. Convergence trend of the normalized fundamental 
frequency for the hinged circular arches with / 5R h = . 
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Table 1. Fundamental frequencies (rad/s) for hinged circular 
arches computed by present three-noded hybrid-mixed ele-
ments( 12  R = ; 73.04 10E = × ; 0.3ν = ; 0.02736ρ = ; 

20.1563 inA = ; 48.138 10I −= × ; 0.8497k = ; 0.25h = ). 
 

Angles 
(degree) 

IHMC3 
(21 d.o.f.) 

HMC3 
(21 d.o.f.) 

EMC3c 
(21 d.o.f.) 

Leung’s 
THICK-2 

Krishi-
nan’s 
E1.1b 

(84 d.o.f.)

Heppler
(27 d.o.f.)

10 5910.7 5842.3 5842.0 5841.74 5874.3 5849.9
20 2849.8 2827.7 2826.5 2827.63 2823.1 2830.2
30 2548.1 2418.5 2342.8 2339.82 2345.2 2339.7
60 840.85 579.67 561.92 560.25 561.2 560.24
90 559.46 237.93 230.75 229.66 230.4 229.77
120 474.77 120.06 116.18 115.64 116.3 115.64
150 425.04 67.12 64.72 64.43 64.93 64.44 
180 384.61 39.63 38.02 37.86 38.24 37.87 
210 348.74 24.01 22.86 22.77 23.05 22.77 
240 316.44 14.58 13.72 13.66 13.87 13.67 
270 287.43 8.62 7.95 7.92 8.06 7.93 
300 261.45 4.74 4.20 4.18 4.27 4.19 
330 238.25 2.14 1.70 1.69 1.73 1.69 
350 224.20 0.89 0.50 0.49 0.50 0.24 

 

 
 
Fig. 11. Convergence trend of the normalized fundamental 
frequency for the hinged circular arches with / 1000R h = . 
 
gence in a free vibration analysis regardless of the 
slenderness ratio and subtended angle. In a free vibra-
tion problem, it can be confirmed repeatedly that the 
hybrid-mixed element EMC3c with the additional 
equilibrium stress functions shows a superior and 
robust behavior for the entire range of slenderness 
ratio and subtended angle. 

The numerical results by considered hybrid-mixed 
elements IHMC3, HMC3 and EMC3c using three-
element idealization (21 d.o.f.) are listed in Table 1. A 
comparison with other existing numerical results [8, 
20, 21] is carried out. Each number in parentheses is 
the number of total d.o.f. used in the vibration analy-
sis. The proposed ECM3 element shows a far superior 

agreement with Leung and Zhu’s Fourier p-element 
THICK-2 [8] and Krishnan’s E1.1b element [21] all 
over the range of subtended angle to IHMC3 and 
HMC3 elements. Although the inconsistent hybrid-
mixed element IHMC3 uses higher-order interpola-
tion functions than the consistent hybrid-mixed ele-
ment HMC3, the HMC3 element generates more 
converging results than the IHMC3 element, espe-
cially for a larger subtended angle. This result evi-
dently shows that the well-established consistent 
stress functions are greatly important in hybrid-mixed 
formulation for curved beam vibrations. 
 

5. Conclusions 

We examined the effect of additional stress func-
tions to satisfy partially or fully equilibrium condi-
tions on the three-node hybrid-mixed curved beam 
element. For this objective, Saleeb and Chang’s 
HMC3 element was considered as our reference 
model. The proposed hybrid-mixed elements, EMC3a 
and EMC3b yield sensitive results to the curvature of 
arches due to their field-inconsistency in membrane 
strain, despite the introduction of additional equilib-
rium stress functions. Several numerical examples 
confirm that the proposed EMC3c element with the 
field-consistent additional equilibrium stress func-
tions produces highly accurate and stabilized results, 
regardless of curvature and slenderness ratio of arches 
in static and dynamic analyses. Especially, EMC3c 
element demonstrates a superb ability in predicting 
stress resultant distributions. 
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